本文主要介紹了太陽能輔助采暖控制系統(tǒng)在別墅型家庭采暖中的應用設計,該控制系統(tǒng)由顯示分機、控制器主機、光電切換模塊組成。本控制系統(tǒng)可與光伏系統(tǒng)結合使用,具有檢測光伏系統(tǒng)輸出電壓功能,自動判斷各種輸出用電設備光電與市電的切換。針對熱泵型純電動客車空調系統(tǒng)在冬季低溫高濕環(huán)境下運行時,能源利用效率偏低、車外換熱器容易結霜等問題,以已搭建的帶低壓補氣的熱泵型純電動客車空調試驗臺為研究對象,試驗研究了車外低溫環(huán)境補氣與不補氣兩種模式的制熱性能。采用能耗分析軟件Design Builder,模擬冬季全天日照下客車內光照得熱量情況,旨在彌補系統(tǒng)制熱量不足、能效偏低等不利影響,有助于優(yōu)化純電動客車空調系統(tǒng)設計及改善系統(tǒng)性能等提供參考依據。太陽能的能源是來自地球外部天體的能源(主要是太陽能),是太陽中的氫原子核在超高溫時聚變釋放的巨大能量,人類所需能量的絕大部分都直接或間接地來自太陽。我們生活所需的煤炭、石油、天然氣等化石燃料都是因為各種植物通過光合作用把太陽能轉變成化學能在植物體內貯存下來后,再由埋在地下的動植物經過漫長的地質年代形成。此外,水能、風能、波浪能、海流能等也都是由太陽能轉換來的。能源現(xiàn)狀
隨著經濟的發(fā)展、社會的進步,人們對能源提出越來越高的要求,尋找新能源成為當前人類面臨的迫切課題。現(xiàn)有電力能源的來源主要有3種,即火電、水電、核電和風力發(fā)電。
火電需要燃燒煤、石油等化石燃料。一方面,化石燃料蘊藏量有限、越燒越少,正面臨著枯竭的危險;另一方面燃燒將排出二氧化碳和硫的氧化物,因此會導致溫室效應和酸雨,惡化地球環(huán)境。
水電要淹沒大量土地,有可能導致生態(tài)環(huán)境破壞,而且大型水庫一旦塌崩,后果將不堪設想。另外,一個國家的水力資源也是有限的,而且還要受季節(jié)的影響。
核電在正常情況下固然是干凈的,但萬一發(fā)生核泄漏,后果同樣是可怕的。前蘇聯(lián)切爾諾貝利核電站事故已使900萬人受到了不同程度的損害;2011年3月11日13時46分,日本福島發(fā)生9.0級地震,引發(fā)震驚國際的福島核電站事故,造成核電站附近30公里成為無人區(qū);方圓5公里的海洋資源將受到不同程度的影響或是海洋生物變異。
風力發(fā)電作為一種清潔的可再生能源,具有廣泛的發(fā)展前景。風能儲量大,廣泛發(fā)展風力發(fā)電是解決中國能源供應不足的有效途徑;風力發(fā)電屬于清潔能源的應用,是減少溫室氣體排放的有效途徑。
理想能源
新能源要同時符合兩個條件:一是蘊藏豐富不會枯竭;二是安全、干凈,不會威脅人類和破壞環(huán)境。找到的新能源主要有兩種,一是太陽能,二是燃料電池。21世紀內太陽能將成為全球主要能源之一,是最原始的能源,地球上幾乎所有其他能源都直接或間接來自太陽能。太陽能是太陽內部或者表面的黑子連續(xù)不斷的核聚變反應過程產生的能量。太陽能太陽能具有資源充足、長壽,分布廣泛、安全、清潔,技術可靠等優(yōu)點。由于太陽能可以轉換成多種其他形式的能量,因此應用范圍非常廣泛,在熱利用方面有太陽能溫室、物品干燥和太陽灶、太陽能熱水器等。經過多年的開發(fā),太陽能發(fā)電也得到了長足的發(fā)展。
從太陽能獲得電力,需通過太陽電池進行光電變換來實現(xiàn)。它同以往其他電源發(fā)電原理完全不同。要使太陽能發(fā)電真正達到實用水平,一是要提高太陽能光電變換效率并降低其成本,二是要實現(xiàn)太陽能發(fā)電同的電網聯(lián)網。太陽能光發(fā)電
太陽能光發(fā)電是指無需通過熱過程直接將光能轉變?yōu)殡娔艿陌l(fā)電方式。它包括光伏發(fā)電、光化學發(fā)電、光感應發(fā)電和光生物發(fā)電。光伏發(fā)電是利用太陽能級半導體電子器件有效地吸收太陽光輻射能,并使之轉變成電能的直接發(fā)電方式,是當今太陽光發(fā)電的主流。在光化學發(fā)電中有電化學光伏電池、光電解電池和光催化電池,目前得到實際應用的是光伏電池。光伏發(fā)電系統(tǒng)主要由太陽能電池、蓄電池、控制器和逆變器組成,其中太陽能電池是光伏發(fā)電系統(tǒng)的關鍵部分,太陽能電池板的質量和成本將直接決定整個系統(tǒng)的質量和成本。太陽能電池主要分為晶體硅電池和薄膜電池兩類,前者包括單晶硅電池、多晶硅電池兩種,后者主要包括非晶體硅太陽能電池、銅銦鎵硒太陽能電池和碲化鎘太陽能電池。
單晶硅太陽能電池的光電轉換效率為15%左右,最高可達23%,在太陽能電池中光電轉換效率最高,但其制造成本高。單晶硅太陽能電池的使用壽命一般可達15年,最高可達25年。多晶硅太陽能電池的光電轉換效率為14%到16%,其制作成本低于單晶硅太陽能電池,因此得到大量發(fā)展,但多晶硅太陽能電池的使用壽命要比單晶硅太陽能電池要短。
薄膜太陽能電池是用硅、硫化鎘、砷化鎵等薄膜為基體材料的太陽能電池。薄膜太陽能電池可以使用質輕、價低的基底材料(如玻璃、塑料、陶瓷等)來制造,形成可產生電壓的薄膜厚度不到1微米,便于運輸和安裝。然而,沉淀在異質基底上的薄膜會產生一些缺陷,因此現(xiàn)有的碲化鎘和銅銦鎵硒太陽能電池的規(guī);慨a轉換效率只有12%到14%,而其理論上限可達29%。如果在生產過程中能夠減少碲化鎘的缺陷,將會增加電池的壽命,并提高其轉化效率。這就需要研究缺陷產生的原因,以及減少缺陷和控制質量的途徑。太陽能電池界面也很關鍵,需要大量的研發(fā)投入。
太陽能熱發(fā)電
通過水或其他工質和裝置將太陽輻射能轉換為電能的發(fā)電方式,稱為太陽能熱發(fā)電。先將太陽能轉化為熱能,再將熱能轉化成電能,它有兩種轉化方式:一種是將太陽熱能直接轉化成電能,如半導體或金屬材料的溫差發(fā)電,真空器件中的熱電子和熱電離子發(fā)電,堿金屬熱電轉換,以及磁流體發(fā)電等;另一種方式是將太陽熱能通過熱機(如汽輪機)帶動發(fā)電機發(fā)電,與常規(guī)熱力發(fā)電類似,只不過是其熱能不是來自燃料,而是來自太陽能。太陽能熱發(fā)電有多種類型,主要有以下五種:塔式系統(tǒng)、槽式系統(tǒng)、盤式系統(tǒng)、太陽池和太陽能塔熱氣流發(fā)電。前三種是聚光型太陽能熱發(fā)電系統(tǒng),后兩種是非聚光型。一些發(fā)達國家將太陽能熱發(fā)電技術作為國家研發(fā)重點,制造了數(shù)十臺各種類型的太陽能熱發(fā)電示范電站,已達到并網發(fā)電的實際應用水平。太陽能(solar energy),是指太陽的熱輻射能(參見熱能傳播的三種方式:輻射),主要表現(xiàn)就是常說的太陽光線。在現(xiàn)代一般用作發(fā)電或者為熱水器提供能源。自地球上生命誕生以來,就主要以太陽提供的熱輻射能生存,而自古人類也懂得以陽光曬干物件,并作為制作食物的方法,如制鹽和曬咸魚等。在化石燃料日趨減少的情況下,太陽能已成為人類使用能源的重要組成部分,并不斷得到發(fā)展。太陽能的利用有光熱轉換和光電轉換兩種方式,太陽能發(fā)電是一種新興的可再生能源。廣義上的太陽能也包括地球上的風能、化學能、水能等。太陽能是由太陽內部氫原子發(fā)生氫氦聚變釋放出巨大核能而產生的,來自太陽的輻射能量。
人類所需能量的絕大部分都直接或間接地來自太陽。植物通過光合作用釋放氧氣、吸收二氧化碳,并把太陽能轉變成化學能在植物體內貯存下來。煤炭、石油、天然氣等化石燃料也是由古代埋在地下的動植物經過漫長的地質年代演變形成的一次能源。地球本身蘊藏的能量通常指與地球內部的熱能有關的能源和與原子核反應有關的能源。
與原子核反應有關的能源正是核能。原子核的結構發(fā)生變化時能釋放出大量的能量,稱為原子核能,簡稱核能,俗稱原子能。它則來自于地殼中儲存的鈾、钚等發(fā)生裂變反應時的核裂變能資源,以及海洋中貯藏的氘、氚、鋰等發(fā)生聚變反應時的核聚變能資源。這些物質在發(fā)生原子核反應時釋放出能量。目前核能最大的用途是發(fā)電。此外,還可以用作其它類型的動力源、熱源等。
太陽能是太陽內部連續(xù)不斷的核聚變反應過程產生的能量。地球軌道上的平均太陽輻射強度為1,369w/㎡。地球赤道周長為40,076千米,從而可計算出,地球獲得的能量可達173,000TW。在海平面上的標準峰值強度為1kw/m2,地球表面某一點24h的年平均輻射強度為0.20kw/㎡,相當于有102,000TW的能量。
盡管太陽輻射到地球大氣層的能量僅為其總輻射能量的22億分之一,但已高達173,000TW,也就是說太陽每秒鐘照射到地球上的能量就相當于500萬噸煤,每秒照射到地球的能量則為1.465×10^14焦。地球上的風能、水能、海洋溫差能、波浪能和生物質能都是來源于太陽;即使是地球上的化石燃料(如煤、石油、天然氣等)從根本上說也是遠古以來貯存下來的太陽能,所以廣義的太陽能所包括的范圍非常大,狹義的太陽能則限于太陽輻射能的光熱、光電和光化學的直接轉換。
目前世界上現(xiàn)有的最有前途的太陽能熱發(fā)電系統(tǒng)大致可分為:槽形拋物面聚焦系統(tǒng)、中央接受器或太陽塔聚焦系統(tǒng)和盤形拋物面聚焦系統(tǒng)。在技術上和經濟上可行的三種形式是:30~80MW聚焦拋物面槽式太陽能熱發(fā)電技術(簡稱拋物面槽式);30~200MW點聚焦中央接收式太陽能熱發(fā)電技術(簡稱中央接收式);7.5~25kW的點聚焦拋物面盤式太陽能熱發(fā)電技術(簡稱拋物面盤式)。
聚焦式太陽能熱發(fā)電系統(tǒng)的傳熱工質主要是水、水蒸汽和熔鹽等,這些傳熱工質在接收器內可以加熱到攝氏450度然后用于發(fā)電。此外,該發(fā)電方式的儲熱系統(tǒng)可以將熱能暫時儲存數(shù)小時,以備用電高峰時之需。
拋物槽式聚焦系統(tǒng)是利用拋物柱面槽式發(fā)射鏡將陽光聚集到管形的接收器上,并將管內傳熱工質加熱,在熱換氣器內產生蒸汽,推動常規(guī)汽輪機發(fā)電。塔式太陽能熱發(fā)電系統(tǒng)是利用一組獨立跟蹤太陽的定日鏡,將陽光聚集到一個固定塔頂部的接收器上以產生高溫。
除了上述幾種傳統(tǒng)的太陽能熱發(fā)電方式以外,太陽能煙囪發(fā)電、太陽池發(fā)電等新領域的研究也有進展。太陽能發(fā)電是利用電池組件將太陽能直接轉變?yōu)殡娔艿难b置。太陽能電池組件(Solar cells)是利用半導體材料的電子學特性實現(xiàn)P-V轉換的固體裝置,在廣大的無電力網地區(qū),該裝置可以方便地實現(xiàn)為用戶照明及生活供電,一些發(fā)達國家還可與區(qū)域電網并網實現(xiàn)互補。目前從民用的角度,在國外技術研究趨于成熟且初具產業(yè)化的是"光伏--建筑(照明)一體化"技術,而國內主要研究生產適用于無電地區(qū)家庭照明用的小型太陽能發(fā)電系統(tǒng)。
太陽能發(fā)電系統(tǒng)主要包括:太陽能電池組件(陣列)、控制器、蓄電池、逆變器、用戶即照明負載等組成。其中,太陽能電池組件和蓄電池為電源系統(tǒng),控制器和逆變器為控制保護系統(tǒng),負載為系統(tǒng)終端。
太陽能電池與蓄電池組成系統(tǒng)的電源單元,因此蓄電池性能直接影響著系統(tǒng)工作特性。
電池單元
由于技術和材料原因,單一電池的發(fā)電量是十分有限的,實用中的太陽能電池是單一電池經串、并聯(lián)組成的電池系統(tǒng),稱為電池組件(陣列)。單一電池是一只硅晶體二極管,根據半導體材料的電子學特性,當太陽光照射到由P型和N型兩種不同導電類型的同質半導體材料構成的P-N結上時,在一定的條件下,太陽能輻射被半導體材料吸收,在導帶和價帶中產生非平衡載流子即電子和空穴。同于P-N結勢壘區(qū)存在著較強的內建靜電場,因而能在光照下形成電流密度J,短路電流Isc,開路電壓Uoc。若在內建電場的兩側面引出電極并接上負載,理論上講由P-N結、連接電路和負載形成的回路,就有"光生電流"流過,太陽能電池組件就實現(xiàn)了對負載的功率P輸出。
理論研究表明,太陽能電池組件的峰值功率Pk,由當?shù)氐奶柶骄椛鋸姸扰c末端的用電負荷(需電量)決定。
儲存單元
太陽能電池產
隨著經濟的發(fā)展、社會的進步,人們對能源提出越來越高的要求,尋找新能源成為當前人類面臨的迫切課題。現(xiàn)有電力能源的來源主要有3種,即火電、水電、核電和風力發(fā)電。
火電需要燃燒煤、石油等化石燃料。一方面,化石燃料蘊藏量有限、越燒越少,正面臨著枯竭的危險;另一方面燃燒將排出二氧化碳和硫的氧化物,因此會導致溫室效應和酸雨,惡化地球環(huán)境。
水電要淹沒大量土地,有可能導致生態(tài)環(huán)境破壞,而且大型水庫一旦塌崩,后果將不堪設想。另外,一個國家的水力資源也是有限的,而且還要受季節(jié)的影響。
核電在正常情況下固然是干凈的,但萬一發(fā)生核泄漏,后果同樣是可怕的。前蘇聯(lián)切爾諾貝利核電站事故已使900萬人受到了不同程度的損害;2011年3月11日13時46分,日本福島發(fā)生9.0級地震,引發(fā)震驚國際的福島核電站事故,造成核電站附近30公里成為無人區(qū);方圓5公里的海洋資源將受到不同程度的影響或是海洋生物變異。
風力發(fā)電作為一種清潔的可再生能源,具有廣泛的發(fā)展前景。風能儲量大,廣泛發(fā)展風力發(fā)電是解決中國能源供應不足的有效途徑;風力發(fā)電屬于清潔能源的應用,是減少溫室氣體排放的有效途徑。
理想能源
新能源要同時符合兩個條件:一是蘊藏豐富不會枯竭;二是安全、干凈,不會威脅人類和破壞環(huán)境。找到的新能源主要有兩種,一是太陽能,二是燃料電池。21世紀內太陽能將成為全球主要能源之一,是最原始的能源,地球上幾乎所有其他能源都直接或間接來自太陽能。太陽能是太陽內部或者表面的黑子連續(xù)不斷的核聚變反應過程產生的能量。太陽能太陽能具有資源充足、長壽,分布廣泛、安全、清潔,技術可靠等優(yōu)點。由于太陽能可以轉換成多種其他形式的能量,因此應用范圍非常廣泛,在熱利用方面有太陽能溫室、物品干燥和太陽灶、太陽能熱水器等。經過多年的開發(fā),太陽能發(fā)電也得到了長足的發(fā)展。
從太陽能獲得電力,需通過太陽電池進行光電變換來實現(xiàn)。它同以往其他電源發(fā)電原理完全不同。要使太陽能發(fā)電真正達到實用水平,一是要提高太陽能光電變換效率并降低其成本,二是要實現(xiàn)太陽能發(fā)電同的電網聯(lián)網。太陽能光發(fā)電
太陽能光發(fā)電是指無需通過熱過程直接將光能轉變?yōu)殡娔艿陌l(fā)電方式。它包括光伏發(fā)電、光化學發(fā)電、光感應發(fā)電和光生物發(fā)電。光伏發(fā)電是利用太陽能級半導體電子器件有效地吸收太陽光輻射能,并使之轉變成電能的直接發(fā)電方式,是當今太陽光發(fā)電的主流。在光化學發(fā)電中有電化學光伏電池、光電解電池和光催化電池,目前得到實際應用的是光伏電池。光伏發(fā)電系統(tǒng)主要由太陽能電池、蓄電池、控制器和逆變器組成,其中太陽能電池是光伏發(fā)電系統(tǒng)的關鍵部分,太陽能電池板的質量和成本將直接決定整個系統(tǒng)的質量和成本。太陽能電池主要分為晶體硅電池和薄膜電池兩類,前者包括單晶硅電池、多晶硅電池兩種,后者主要包括非晶體硅太陽能電池、銅銦鎵硒太陽能電池和碲化鎘太陽能電池。
單晶硅太陽能電池的光電轉換效率為15%左右,最高可達23%,在太陽能電池中光電轉換效率最高,但其制造成本高。單晶硅太陽能電池的使用壽命一般可達15年,最高可達25年。多晶硅太陽能電池的光電轉換效率為14%到16%,其制作成本低于單晶硅太陽能電池,因此得到大量發(fā)展,但多晶硅太陽能電池的使用壽命要比單晶硅太陽能電池要短。
薄膜太陽能電池是用硅、硫化鎘、砷化鎵等薄膜為基體材料的太陽能電池。薄膜太陽能電池可以使用質輕、價低的基底材料(如玻璃、塑料、陶瓷等)來制造,形成可產生電壓的薄膜厚度不到1微米,便于運輸和安裝。然而,沉淀在異質基底上的薄膜會產生一些缺陷,因此現(xiàn)有的碲化鎘和銅銦鎵硒太陽能電池的規(guī);慨a轉換效率只有12%到14%,而其理論上限可達29%。如果在生產過程中能夠減少碲化鎘的缺陷,將會增加電池的壽命,并提高其轉化效率。這就需要研究缺陷產生的原因,以及減少缺陷和控制質量的途徑。太陽能電池界面也很關鍵,需要大量的研發(fā)投入。
太陽能熱發(fā)電
通過水或其他工質和裝置將太陽輻射能轉換為電能的發(fā)電方式,稱為太陽能熱發(fā)電。先將太陽能轉化為熱能,再將熱能轉化成電能,它有兩種轉化方式:一種是將太陽熱能直接轉化成電能,如半導體或金屬材料的溫差發(fā)電,真空器件中的熱電子和熱電離子發(fā)電,堿金屬熱電轉換,以及磁流體發(fā)電等;另一種方式是將太陽熱能通過熱機(如汽輪機)帶動發(fā)電機發(fā)電,與常規(guī)熱力發(fā)電類似,只不過是其熱能不是來自燃料,而是來自太陽能。太陽能熱發(fā)電有多種類型,主要有以下五種:塔式系統(tǒng)、槽式系統(tǒng)、盤式系統(tǒng)、太陽池和太陽能塔熱氣流發(fā)電。前三種是聚光型太陽能熱發(fā)電系統(tǒng),后兩種是非聚光型。一些發(fā)達國家將太陽能熱發(fā)電技術作為國家研發(fā)重點,制造了數(shù)十臺各種類型的太陽能熱發(fā)電示范電站,已達到并網發(fā)電的實際應用水平。太陽能(solar energy),是指太陽的熱輻射能(參見熱能傳播的三種方式:輻射),主要表現(xiàn)就是常說的太陽光線。在現(xiàn)代一般用作發(fā)電或者為熱水器提供能源。自地球上生命誕生以來,就主要以太陽提供的熱輻射能生存,而自古人類也懂得以陽光曬干物件,并作為制作食物的方法,如制鹽和曬咸魚等。在化石燃料日趨減少的情況下,太陽能已成為人類使用能源的重要組成部分,并不斷得到發(fā)展。太陽能的利用有光熱轉換和光電轉換兩種方式,太陽能發(fā)電是一種新興的可再生能源。廣義上的太陽能也包括地球上的風能、化學能、水能等。太陽能是由太陽內部氫原子發(fā)生氫氦聚變釋放出巨大核能而產生的,來自太陽的輻射能量。
人類所需能量的絕大部分都直接或間接地來自太陽。植物通過光合作用釋放氧氣、吸收二氧化碳,并把太陽能轉變成化學能在植物體內貯存下來。煤炭、石油、天然氣等化石燃料也是由古代埋在地下的動植物經過漫長的地質年代演變形成的一次能源。地球本身蘊藏的能量通常指與地球內部的熱能有關的能源和與原子核反應有關的能源。
與原子核反應有關的能源正是核能。原子核的結構發(fā)生變化時能釋放出大量的能量,稱為原子核能,簡稱核能,俗稱原子能。它則來自于地殼中儲存的鈾、钚等發(fā)生裂變反應時的核裂變能資源,以及海洋中貯藏的氘、氚、鋰等發(fā)生聚變反應時的核聚變能資源。這些物質在發(fā)生原子核反應時釋放出能量。目前核能最大的用途是發(fā)電。此外,還可以用作其它類型的動力源、熱源等。
太陽能是太陽內部連續(xù)不斷的核聚變反應過程產生的能量。地球軌道上的平均太陽輻射強度為1,369w/㎡。地球赤道周長為40,076千米,從而可計算出,地球獲得的能量可達173,000TW。在海平面上的標準峰值強度為1kw/m2,地球表面某一點24h的年平均輻射強度為0.20kw/㎡,相當于有102,000TW的能量。
盡管太陽輻射到地球大氣層的能量僅為其總輻射能量的22億分之一,但已高達173,000TW,也就是說太陽每秒鐘照射到地球上的能量就相當于500萬噸煤,每秒照射到地球的能量則為1.465×10^14焦。地球上的風能、水能、海洋溫差能、波浪能和生物質能都是來源于太陽;即使是地球上的化石燃料(如煤、石油、天然氣等)從根本上說也是遠古以來貯存下來的太陽能,所以廣義的太陽能所包括的范圍非常大,狹義的太陽能則限于太陽輻射能的光熱、光電和光化學的直接轉換。
目前世界上現(xiàn)有的最有前途的太陽能熱發(fā)電系統(tǒng)大致可分為:槽形拋物面聚焦系統(tǒng)、中央接受器或太陽塔聚焦系統(tǒng)和盤形拋物面聚焦系統(tǒng)。在技術上和經濟上可行的三種形式是:30~80MW聚焦拋物面槽式太陽能熱發(fā)電技術(簡稱拋物面槽式);30~200MW點聚焦中央接收式太陽能熱發(fā)電技術(簡稱中央接收式);7.5~25kW的點聚焦拋物面盤式太陽能熱發(fā)電技術(簡稱拋物面盤式)。
聚焦式太陽能熱發(fā)電系統(tǒng)的傳熱工質主要是水、水蒸汽和熔鹽等,這些傳熱工質在接收器內可以加熱到攝氏450度然后用于發(fā)電。此外,該發(fā)電方式的儲熱系統(tǒng)可以將熱能暫時儲存數(shù)小時,以備用電高峰時之需。
拋物槽式聚焦系統(tǒng)是利用拋物柱面槽式發(fā)射鏡將陽光聚集到管形的接收器上,并將管內傳熱工質加熱,在熱換氣器內產生蒸汽,推動常規(guī)汽輪機發(fā)電。塔式太陽能熱發(fā)電系統(tǒng)是利用一組獨立跟蹤太陽的定日鏡,將陽光聚集到一個固定塔頂部的接收器上以產生高溫。
除了上述幾種傳統(tǒng)的太陽能熱發(fā)電方式以外,太陽能煙囪發(fā)電、太陽池發(fā)電等新領域的研究也有進展。太陽能發(fā)電是利用電池組件將太陽能直接轉變?yōu)殡娔艿难b置。太陽能電池組件(Solar cells)是利用半導體材料的電子學特性實現(xiàn)P-V轉換的固體裝置,在廣大的無電力網地區(qū),該裝置可以方便地實現(xiàn)為用戶照明及生活供電,一些發(fā)達國家還可與區(qū)域電網并網實現(xiàn)互補。目前從民用的角度,在國外技術研究趨于成熟且初具產業(yè)化的是"光伏--建筑(照明)一體化"技術,而國內主要研究生產適用于無電地區(qū)家庭照明用的小型太陽能發(fā)電系統(tǒng)。
太陽能發(fā)電系統(tǒng)主要包括:太陽能電池組件(陣列)、控制器、蓄電池、逆變器、用戶即照明負載等組成。其中,太陽能電池組件和蓄電池為電源系統(tǒng),控制器和逆變器為控制保護系統(tǒng),負載為系統(tǒng)終端。
太陽能電池與蓄電池組成系統(tǒng)的電源單元,因此蓄電池性能直接影響著系統(tǒng)工作特性。
電池單元
由于技術和材料原因,單一電池的發(fā)電量是十分有限的,實用中的太陽能電池是單一電池經串、并聯(lián)組成的電池系統(tǒng),稱為電池組件(陣列)。單一電池是一只硅晶體二極管,根據半導體材料的電子學特性,當太陽光照射到由P型和N型兩種不同導電類型的同質半導體材料構成的P-N結上時,在一定的條件下,太陽能輻射被半導體材料吸收,在導帶和價帶中產生非平衡載流子即電子和空穴。同于P-N結勢壘區(qū)存在著較強的內建靜電場,因而能在光照下形成電流密度J,短路電流Isc,開路電壓Uoc。若在內建電場的兩側面引出電極并接上負載,理論上講由P-N結、連接電路和負載形成的回路,就有"光生電流"流過,太陽能電池組件就實現(xiàn)了對負載的功率P輸出。
理論研究表明,太陽能電池組件的峰值功率Pk,由當?shù)氐奶柶骄椛鋸姸扰c末端的用電負荷(需電量)決定。
儲存單元
太陽能電池產